Single vesicle observations of the cardiolipin-cytochrome C interaction: induction of membrane morphology changes.
نویسندگان
چکیده
We present a novel platform for investigating the composition-specific interactions of proteins (or other biologically relevant molecules) with model membranes composed of compositionally distinct domains. We focus on the interaction between a mitochondrial-specific lipid, cardiolipin (CL), and a peripheral membrane protein, cytochrome c (cyt c). We engineer vesicles with compositions such that they phase separate into coexisting liquid phases and the lipid of interest, CL, preferentially localizes into one of the domains (the liquid disordered (L(d)) phase). The presence of CL-rich and CL-depleted domains within the same vesicle provides a built-in control experiment to simultaneously observe the behavior of two membrane compositions under identical conditions. We find that cyt c binds strongly to CL-rich domains and observe fascinating morphological transitions within these regions of membrane. CL-rich domains start to form small buds and eventually fold up into a collapsed state. We also observe that cyt c can induce a strong attraction between the CL-rich domains of adjacent vesicles as demonstrated by the development of large osculating regions between these domains. Qualitatively similar behavior is observed when other polycationic proteins or polymers of a similar size and net charge are used instead of cyt c. We argue that these striking phenomena can be simply understood by consideration of colloidal forces between the protein and the membrane. We discuss the possible biological implications of our observations in relation to the structure and function of mitochondria.
منابع مشابه
Differential interactions of apo- and holocytochrome c with acidic membrane lipids in model systems and the implications for their import into mitochondria.
Monomolecular layers of lipid extracts of microsomal, mitochondrial outer and inner membranes, and pure lipid species have been used to measure their interaction with apo- and holocytochrome c. Large differences were observed both with respect to the nature and the lipid specificity of the interaction. The initial electrostatic interaction of the hemefree precursor apocytochrome c with anionic ...
متن کاملRole of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria.
Several lines of evidence indicate that mitochondria-mediated reactive oxygen species (ROS) generation is a major source of oxidative stress in the cell. Release of cytochrome c from mitochondria is a central event in apoptosis induction and appears to be mediated by ROS. Dissociation of cytochrome c from the IMM, where it is bound to cardiolipin, represents a necessary first step for cytochrom...
متن کاملCytochrome c causes pore formation in cardiolipin-containing membranes.
The release of cytochrome c from mitochondria is a key signaling mechanism in apoptosis. Although extramitochondrial proteins are thought to initiate this release, the exact mechanisms remain unclear. Cytochrome c (cyt c) binds to and penetrates lipid structures containing the inner mitochondrial membrane lipid cardiolipin (CL), leading to protein conformational changes and increased peroxidase...
متن کاملCytochrome c release from mitochondria proceeds by a two-step process.
Cytochrome c is often released from mitochondria during the early stages of apoptosis, although the precise mechanisms regulating this event remain unclear. In this study, with isolated liver mitochondria, we demonstrate that cytochrome c release requires a two-step process. Because cytochrome c is present as loosely and tightly bound pools attached to the inner membrane by its association with...
متن کاملIncorporation of cytochrome oxidase into cardiolipin bilayers and induction of nonlamellar phases.
Cytochrome oxidase from beef heart has been lipid-substituted with beef heart cardiolipin. The lipid phase behavior and protein aggregation state of the reconstituted complexes have been studied with 31P NMR, freeze-fracture electron microscopy, and saturation-transfer ESR of the spin-labeled protein. In the absence of salt, the lipid has a lamellar arrangement, and the protein is integrated an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2011